The effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes.

نویسندگان

  • Nguyen Vinh-Son
  • Saartje Swinnen
  • Myrna H Matus
  • Minh Tho Nguyen
  • David A Dixon
چکیده

Potential energy surfaces for H(2) release from hydrazine interacting with borane, alane, diborane, dialane and borane-alane were constructed from MP2/aVTZ geometries and zero point energies with single point energies at the CCSD(T)/aug-cc-pVTZ level. With one borane or alane molecule, the energy barrier for H(2)-loss of approximately 38 or 30 kcal mol(-1) does not compete with the B-N or Al-N bond cleavage ( approximately 30 or approximately 28 kcal mol(-1)). The second borane or alane molecule can play the role of a bifunctional catalyst. The barrier energy for H(2)-elimination is reduced from 38 to 23 kcal mol(-1), or 30 to 20 kcal mol(-1) in the presence of diborane or dialane, respectively. The mixed borane-alane dimer reduces the barrier energy for H(2) release from hydrazine to approximately 17 kcal mol(-1). A systematic comparison with the reaction pathways from ammonia borane shows that hydrazine could be an alternative for ammonia in producing borane amine derivatives. The results show a significant effect of the NH(2) substituent on the relevant thermodynamics. The B-N dative bond energy of 31 kcal mol(-1) in NH(2)NH(2)BH(3) is approximately 5 kcal mol(-1) larger than that of the parent BH(3)NH(3). The higher thermodynamic stability could allow hydrazine-borane to be used as a material for certain energetic H(2) storage applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی محاسباتی انتقال پروتون درون‌مولکولی ترکیب 3- نیترو- 1،2،4- تری آزول (NTO)

The effect of the presence of compounds such as H2O, NH3, UDMH and NH2-NH2 has been reported on the inter-molecular proton transfer of 3-Nitro-1,2,4-triazole (NTO) using quantum computing. Gaussian 09 program package has been used to calculate geometry optimization and all reactions with 6-311++G(d,p) basis set. In these studies, the substances mentioned in the molecular reactions act as a cata...

متن کامل

In situ Synchrotron X-ray Thermodiffraction of Boranes

Boranes of low molecular weight are crystalline materials that have been much investigated over the past decade in the field of chemical hydrogen storage. In the present work, six of them have been selected to be studied by in situ synchrotron X-ray thermodiffraction. The selected boranes are ammonia borane NH3BH3 (AB), hydrazine borane N2H4BH3 (HB), hydrazine bisborane N2H4(BH3)2 (HBB), lithiu...

متن کامل

Iron–dinitrogen coordination chemistry: Dinitrogen activation and reactivity

Understanding the coordination of dinitrogen to iron is important for understanding biological nitrogen fixation aswell as for designing synthetic systems that are capable of reducing N2 to NH3 undermild conditions. This review discusses recent advances in iron–dinitrogen coordination complexes and describes the factors that contribute to the degree of activation of the coordinatedN2. The react...

متن کامل

Formation of Nitrogen and Hydrogen-bearing Molecules in Solid Ammonia and Implications for Solar System and Interstellar Ices

We irradiated solid ammonia (NH3) in the temperature range of 10Y60 K with high-energy electrons to simulate the processing of ammonia-bearing ices in the interstellar medium and in the solar system. By monitoring the newly formed molecules online and in situ, the synthesis of hydrazine (N2H4), diazene (N2H2 isomers), hydrogen azide (HN3), the amino radical (NH2), molecular hydrogen (H2), and m...

متن کامل

Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-delocalization

The concept of Resonance Assisted Hydrogen Bond (RAHB), which usually occurs in b diketons, has a remarkable role in chemistry. These molecules, which contain heteroatom particularly O and N, are species with biological interest in protein folding and DNA pairing. Therefore, the amplification of hydrogen bonds strength by substituents may be important in life scie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 30  شماره 

صفحات  -

تاریخ انتشار 2009